Lect 6: Newton's Second Law of Motion

Acceleration & Force 1 pt extra credit printing

Newton's Second Law of Motion: Newton's first law says that a	a force is needed to change an object's			
motion. What kind of change happens?	! What is acceleration? The rate at			
which changes over				
Predict whether the following are true or false.				
 If you slow down on your bike, you are accelerating. 				

If you ride your bike at constant speed, you cannot accelerate.

· Changing the speed and changing the direction of your bike are both examples of acceleration.

Acceleration: going fast??? This is where it gets tricky... we typically think of acceleration as going fast. Remember that a change in *velocity* could be a change in speed, a change in direction, or both. So if you are accelerating, it means you are changing speed (going faster or slower) or direction. A decrease in speed is called

Think about it this way... What happens when you coast down a long hill on your bike or board? At the top of the hill, you move slowly. As you go down the hill, you move faster & faster - you accelerate! If your speed increases by 1 mph each second, then your acceleration is 1 mph per second.

Acceleration = final velocity - initial velocity time

Example of Acceleration	How Velocity Changes		
A plane taking off			
A car stopping at a stop sign			
Driving around a corner			

Acceleration
$$(m/s^{2})$$

$$Acceleration (m/s^{2})$$

$$Acceleration (m/s)$$

$$Acceleration (m/s^{2})$$

$$Acceleration (m/s^{2})$$

$$Acceleration (m/s^{2})$$

$$Acceleration (m/s^{2})$$

How do you calculate acceleration?

Example #1: In a summer storm, the wind is blowing with a velocity of 8 m/s north.
Suddenly, in 3 seconds, the wind's velocity is 23 m/s north.
What is the acceleration in the wind?

Example #2: You are riding your bike downhill at a speed of 15 m/s west. Five seconds later, you find yourself traveling 25 m/s west. What is your acceleration

Example #3: At point A, a runner is jogging at 3 m/s. Twenty seconds later, at point B on a hill, the jogger's velocity is now 1 m/s. What is the jogger's acceleration from point A to point B?

Newton's Second Law of Motion: The second law says that the acceleration of an object produced by a force is directly proportional to the magnitude of the force, the same direction as the force, and inversely proportional to the mass of the object. What the heck????

acceleration, & mass acceleration increases,	er way to phrase it: force acceleration. As force As force	As mass or	Newton's second Law e = mass x acceleration
F=ma THE MORE FORCE THE MORE ACCELERATION	What does this mean, reall a trip to Costco. After grab dog or piece of pizza, you nice & light, and fun to driv you're done shopping, who feel to move it? HARD! It to mass.	pbing a hot grab a cart & start shew around & pretend at does the cart look	to race people. By the time like? FULL!!!! How does it
Force of hand accelerates the brick	»It takes one hand to push the brick. »	Twice the force on twice the mass gives the same acceleration	»If you have twice the mass, it takes twice the force to move it at the same acceleration.
Twice as much force produces twice as much acceleration	»If you apply twice the force by using two hands, the acceleration increases by two.	The same force accelerates 2 bricks 1/2 as much	»But if you push two bricks with the same force, they accelerate half as fast.

Newton's Law #2 & Falling Objects: Remember what you learned about the rate of acceleration for falling objects? All falling objects fall to the Earth with the same acceleration... 9.8 m/s/s. Does more mass make an object fall faster? No, the acceleration is always _______. So let's see how this works... An object is in free fall if it is accelerating due to the force of gravity & no other objects are acting on it. A ball dropped off a cliff is in free fall until it hits the ground. Objects in free fall accelerate at 9.8 m/s² on Earth.